76,382 research outputs found

    A Model of Low-lying States in Strongly Interacting Electroweak Symmetry-Breaking Sector

    Full text link
    It is proposed that, in a strongly-interacting electroweak sector, besides the Goldstone bosons, the coexistence of a scalar state (HH) and vector resonances such as A1A_1 [IG(JP)=1(1+I^G(J^P)=1^-(1^+)], VV [1+(1)1^+(1^-)] and ωH\omega_H^{} [0(1)0^-(1^-)] is required by the proper Regge behavior of the forward scattering amplitudes. This is a consequence of the following well-motivated assumptions: (a). Adler-Weisberger-type sum rules and the superconvergence relations for scattering amplitudes hold in this strongly interacting sector; (b). the sum rules at t=0t=0 are saturated by a minimal set of low-lying states with appropriate quantum numbers. It therefore suggests that a complete description should include all these resonances. These states may lead to distinctive experimental signatures at future colliders.Comment: revised version, to appear in Modern Physics Letters A; file also available via anonymous ftp at ftp://ucdhep.ucdavis.edu/han/sews/lowlying.p

    A Generic Dynamical Model of Gamma-ray Burst Remnants

    Get PDF
    The conventional generic model is deemed to explain the dynamics of γ\gamma-ray burst remnants very well, no matter whether they are adiabatic or highly radiative. However, we find that for adiabatic expansion, the model could not reproduce the Sedov solution in the non-relativistic phase, thus the model needs to be revised. In the present paper, a new differential equation is derived. The generic model based on this equation has been shown to be correct for both radiative and adiabatic fireballs, and in both ultra-relativistic and non-relativistic phase.Comment: 10 pages, LaTeX, 4 postscript figures, accepted for publication in MNRA

    Gamma-ray bursts: postburst evolution of fireballs

    Get PDF
    The postburst evolution of fireballs that produce γ\gamma-ray bursts is studied, assuming the expansion of fireballs to be adiabatic and relativistic. Numerical results as well as an approximate analytic solution for the evolution are presented. Due to adoption of a new relation among tt, RR and γ\gamma (see the text), our results differ markedly from the previous studies. Synchrotron radiation from the shocked interstellar medium is attentively calculated, using a convenient set of equations. The observed X-ray flux of GRB afterglows can be reproduced easily. Although the optical afterglows seem much more complicated, our results can still present a rather satisfactory approach to observations. It is also found that the expansion will no longer be highly relativistic about 4 days after the main GRB. We thus suggest that the marginally relativistic phase of the expansion should be investigated so as to check the afterglows observed a week or more later.Comment: 17 pages, 4 figures, MNRAS in pres

    Optical Flashes and Very Early Afterglows in Wind Environments

    Full text link
    The interaction of a relativistic fireball with its ambient medium is described through two shocks: a reverse shock that propagates into the fireball, and a forward shock that propagates into the medium. The observed optical flash of GRB 990123 has been considered to be the emission from such a reverse shock. The observational properties of afterglows suggest that the progenitors of some GRBs may be massive stars and their surrounding media may be stellar winds. We here study very early afterglows from the reverse and forward shocks in winds. An optical flash mainly arises from the relativistic reverse shock while a radio flare is produced by the forward shock. The peak flux densities of optical flashes are larger than 1 Jy for typical parameters, if we do not take into account some appropriate dust obscuration along the line of sight. The radio flare always has a long lasting constant flux, which will not be covered up by interstellar scintillation. The non-detections of optical flashes brighter than about 9th magnitude may constrain the GRBs isotropic energies to be no more than a few 105210^{52} ergs and wind intensities to be relatively weak.Comment: 21 pages, 6 figures, accepted by MNRAS on March 7, 200

    Magnetoresistance in the superconducting state at the (111) LaAlO3_3/SrTiO3_3 interface

    Full text link
    Condensed matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order is known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3_3 (LAO) and SrTiO3_3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is in the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state, and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.Comment: 6 Pages 4 figure

    Anisotropic, multi-carrier transport at the (111) LaAlO3_3/SrTiO3_3 interface

    Full text link
    The conducting gas that forms at the interface between LaAlO3_3 and SrTiO3_3 has proven to be a fertile playground for a wide variety of physical phenomena. The bulk of previous research has focused on the (001) and (110) crystal orientations. Here we report detailed measurements of the low-temperature electrical properties of (111) LAO/STO interface samples. We find that the low-temperature electrical transport properties are highly anisotropic, in that they differ significantly along two mutually orthogonal crystal orientations at the interface. While anisotropy in the resistivity has been reported in some (001) samples and in (110) samples, the anisotropy in the (111) samples reported here is much stronger, and also manifests itself in the Hall coefficient as well as the capacitance. In addition, the anisotropy is not present at room temperature and at liquid nitrogen temperatures, but only at liquid helium temperatures and below. The anisotropy is accentuated by exposure to ultraviolet light, which disproportionately affects transport along one surface crystal direction. Furthermore, analysis of the low-temperature Hall coefficient and the capacitance as a function of back gate voltage indicates that in addition to electrons, holes contribute to the electrical transport.Comment: 11 pages, 9 figure
    corecore